|
|
|
Sei nella sezione Scienza   -> Categoria:  Tecnologia
|
AlphaFold è un modello di intelligenza artificiale creato da DeepMind, l’azienda di Google che ha realizzato sistemi come AlphaGo (che nel 2016 sconfisse il campione del mondo di Go), AlphaZero e AlphaStar. Il sistema è stato progettato appositamente per predire il ripiegamento proteico partendo semplicemente dalla squenza di aminoacidi, uno dei problemi più difficili (e dispendiosi) da risolvere nella ricerca medica. Comprendere quale struttura tridimensionale prenderà una proteina – conoscendo solo la lunga lista di aminoacidi – richiede risorse computazionali enormi, ma è essenziale per i ricercatori. La struttura 3D consente infatti di capire come si comporterà la proteina in presenza di altre molecole, aprendo le porte a una serie di test e simulazioni per comprendere quali farmaci saranno efficaci e quali inutili. Esperimenti per predire la struttura 3D di una proteina possono impiegare mesi per concretizzarsi, e non sempre ci possiamo permettere il lusso di aspettare così tanto. Ecco perché la strategia di AlphaFold non è cercare un risultato che sia esatto al 100%, bensì una previsione che si avvicini il più possibile a quel 100% senza che sia necessario raggiungerlo. Così facendo si può indirizzare la ricerca su determinate strutture proteiche piuttosto che su altre, riducendo notevolmente i tempi. A seguito dell’attuale emergenza sanitaria causata dal Coronavirus SARS-CoV-2 DeepMind ha individuato alcune proteine associate al virus ma non ancora adeguatamente studiate dalla comunità scientifica. Mettendo al lavoro i suoi algoritmi di deep learning l’azienda inglese ha elaborato “previsioni strutturali” di queste proteine, mettendole quindi a disposizione di tutti con un semplice link ai risultati. DeepMind tiene a sottolineare che queste strutture non sono state verificate con test sperimentali (quelli che richiederebbero i mesi di tempo) né sottoposte a una peer review, ma le probabilità che esse si avvicinino a quelle reali è elevata. Del resto AlphaFold ha vinto l’ultimo CASP (Critical Assessment of protein Structure Prediction) staccando nettamente gli altri concorrenti in una competizione che mirava a trovare modelli in grado di avvicinarsi il più possibile all’effettivo ripiegamento delle proteine. L’intelligenza artificiale, in particolare il deep learning, è ideale per trovare pattern e sequenze invisibili all’uomo o irraggiungibili per i modelli tradizionali. Prevedere il ripiegamento è uno dei compiti più lunghi e difficili nello studio di una proteina, ma con l’aiuto dell’AI saremo in grado di reagire più velocemente alle minacce rappresentate da patogeni nuovi e ancora sconosciuti. Abbiamo stipulato un accordo con l'autore, Luca Sambucci, per la diffusione dei suoi articoli. L'articolo originale si trova al seguente link: Notizie.ai
|
Cosa ne pensi? |
|
Per commentare l'articolo occorre essere loggati e rispettare la netiquette del sito. Se sei registrato effettua il login dal box qui a sinistra. Se ancora non sei registrato fallo cliccando qui |
I commenti: | |||
Commento
1)
|
|||
Commento di: emilia.urso | Ip:83.73.103.204 | Voto: 7 | Data 31/10/2024 16:23:58 |
Sei
iscritto su Facebook, Twitter o G+?
Commenta e condividi l'articolo direttamente.
Cos'è uno Stato senza i cittadini? Nulla. Cosa sono i cittadini senza lo Stato? La risposta la conosciamo tutti, perchè lo Stato italiano palesemente, sta lasciando alla deriva la motivazione fondamentale della sua stessa esistenz
I risultati, come sempre accade nella sicurezza informatica, variano a seconda di quanta sensibilità si vuole assegnare al classificatore.
Vita e lavoro sono spesso scandite da alcune metriche che, giuste o sbagliate che siano, misurano la progressione, la crescita (o decrescita) rispetto a un determinato periodo.
Il nuovo tablet Fire HD 8 presenta caratteristiche che tutti in famiglia apprezzano: contenuti di qualità, maggiore spazio di archiviazione, maggiore durata della batteria, il tutto a un prezzo incredibilmente conveniente
I modelli predittivi hanno fallito il loro primo vero appuntamento con un cambiamento epocale – certo, di quelli che si trovano solo nei libri di storia – e nel settore dell’intelligenza artificiale questi problemi non sono presi sottogamba.